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\ ABSTRACT
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N
This report describes the work and results of a study to establish the

performance of existing digital image processing techniques on FLIR imagery

supplied by NVL. The image processor would form the basis for an automatic

target cueing system to assist the human operator of a sensor system.

The study consisted of a statistical test, performed by computer simu-
lation, including training and test phases. The target classes included
truck, tank, and APC. Initial detection of targets scored in the 90% range.
Depending upon image quality, the classification perforamance was in the 60%
to 80% range. Using the same sensitivity setting, the false alarm rate was
20%. The exact setting, trading false alarm rate for detection rate, would

depend upon the mission raquirements.

It was noted that the number of samples was very limited, in view of
the number of features used. Future efforts might include a larger data base.

It was also suggested that the design of a compact automatic cueing system

breadboard be started to keep pace with sensor hardware development.
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1.0 INTRODUCTION

The major business activity of the Westinghouse Systems Development
Division consists of the development of sophisticated sensor systems for
military requirements. The programs cover radar, IR and visual frequencies.
In 1965, pattern recognition research was initiated within the Division to
support these sensor programs. The objective of this research was the

development of digital image processing and automatic recognition techniques

and systems.

By 1970, a specific approach had been established for the extraction
of useful information, such as target location and identity from remote
sensor- images. The approach consists of the serial preprocessing of the
digitized image samples, on a line~by-line basis, so as to extract certair
key image features, and to reduce the data bandwidth by orders of magnitude. ]
The results of the preprocessing operation are then operated on by a general-
purpose processor, to locate and classify targets, or to perform map-matching
between similar terrain images. The Westinghouse techniques for digital image

processing are described in Section 2.0.

At about the same time, i'.: military laboratories began to support this

research for the specific application to the problem of "sutowatic tarzet 1

cueing”. We might define automatic cueing as the use of autrmatic zecognirion
devices to initiate appropriate audible or visual signals (cues) to assist

the human interpreter in his evaluation of sensor images. The cueing system
acts as an information filter on the sensor data, by selecting important events,

by providing an audible alurm to attract the attention of the operator, and
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then by providing visual indications of the target location and identity on

his display. In 1971, Westinghouse began automatic cueing studies with the

Naval Air Systems Command (Reference 1), with the Air Force Rome Air Development

Center (Reference 2), and with the Army's Frankford Arsenal (Referemce 3). In
the latter program, a real-time demonstration breadboard cueing system was

conitructed, which is presently being tested with video-taped flight data.

In general, the results of these programs are very promising when com-
pared with available performance data for human operators under realistic
circumstances. It appears quite possible that the target acquisition per=-

formance of a helicopter pilot, for example, might be doubled with the use

of automatic cueing devices.

In February, 1975, a presentation on Westinghouse cueing techniques was
made to Mr. John Dehne and Dr. James Tegnelia of NVL. Following that meeting,
Mr. Dehne indicated that NVL was preparing a data base of digitized images
for an 875-line TV compatible FLIR sensor., He expressed an interest in the
performance of the Westinghouse techniques on this data base. The program

described in this report provides an answer to that question.

The description of the techniques in Section 2.0 is followed by a
detailed discussion of the test program, using the imagery supplied by NVL,
in Section 3.0. Conclusions and recommendations are contained in Section 4.0,

and References in Section 5.0.
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2.0 DESCRIPTION OF WESTINGHOUSE AUTOMATIC CUEING TECHNIQUES

We define “automatic cueing" as the use of automatic recognition devices
to initiate appropriate audible or visval signals or cues tc assist the human
interpreter in his evaluation of sensor images. As shown by Figure 2-1, the
cueing system acts as an informat‘on filter on the sensor data, selecting

images of importance, marking them with visual indications of target location,

and providing audible alarms to attract the attention of the interpreter.

The sequences of operations carried out by an automatic cueing system
is shown by Figure 2-2. The operations are performed over the entire image,
although the figure examines only a small window of the FLIR display sbown
at the top. First; the image is digitized for use by the image processcr.
Preprocessing of the digitized data serves to reduce its bandwidth by
retaining only the information necessary for automatic recognition., When
recognition of desired targets has been accomplished, appropriate audible
and visual cues are initiated. These cues will not only identify the target
types, within the limitations of sensor resolution, but can also provide
precise coordinates of their location in the image. A variety of target types

can be accommodated simultaneously by the cueing system.

The core of the cueing system is the digital image processor, It is
a hybrid system utilizing a high speed hardwired preprocessor, followed by a
programmable processor (general-purpose computer) to generate features and
employ the recognition logic. The preprocessor is provided as special-~
purpose hardware in order to achieve a high data input rate. The output data
rate is greatly reduced (by at least a factor of five), permitting the

flexibility available in a slower speed programmabie processor for final
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target decisions. A block diagram of the image processor is shown by Figure
2-3. It should be noted that the image processor is a two-dimensional pro-

cessor. The preprocessor contains 4 sets of single-line storage thas “wrap

around” to permit two-dimensional operations. Operation in both dimensions

simultaneously provides greater noise rejection and a better match tc the

signal's behavior than one-dimensional operations.

2.1 Preprocessor

The function of the preprocessor is to extract from the gray level
image the information required for generating recognition features. Three
types of dats are extracted. The primary data are the straight-line contours
of gray~-level gradient. Thus a line-drawing of the video image is generated.
The second type of data are positiunal cues of gray-level closed objects
(or "blobs"). The location of a blob generates a window within which recog-
nition features are generated. The final set of data are statistical param-
eters computed during the preproccssing which may be used in texture classifi-

cation.

Operation of the preprocessor is on a line-hy-line basis with respect
to the input image. Therefore, videc data aay be handled directly. Further-
more, storage requirements in the preprocessor are limited to single lines

of data only.

2.1.1 Gradient Extraction

To generace the straight-line contours (subsets) of the image, it is

uecessary to first compute the two-dimensional gradieat at each image poin:.

i st P, i
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This is done as shown in Figure 2-4 with a four-pixel window scanning across
the image in a raster format. The gradient amplitude and angle are approxi-
mated as shown. The gradient direction is quantized to 16 discrete directioms,
as depicted in the diagram. To suppress the areas of negligible gradient
activity (containing no significant contour or edge information), a threshold
is applied to the gradient amplitude. Figures 2-5(a) and 2-5(b) show a gray
level ir ge and its computed gradient, This is a FLIR image of a small truck.
gradient image has been threshoided and displays gradient direction, with the

directions 10 through 16 coded with an overprinted slash /.

2.1.2 Gradient Maximizing

After gradient thresholding the edges are generally still too wide for
subset generation. Therefore a gradient thinning operation is performed.
The operation basically "skeletonizes'" adjacent colinear gradient directions

to the peak or maximum points.

The algorithm utilizes a raster scanning window containing a gradient
cell "X" and 4 of its nearest neighbors. The scanning window is depicted at
the top of Figure 2-6. The neighbors with colinear gradients are compared to
"X", The largest gradient is then retained. This procedure is repeated se-
quentially for each gradient point in the image. An example of the maximized

gradient is shown in Figure 2-5(c).
2.1.3 Subset Generation

Subset generation is accomplished by "growing" a line formed by adjacent
parallel gradients. As before, a 5-cell scanning window is employed. The new

data point is labeled cell "X". Its four neighbors are examined (sequentially:

A, B, C, then D) to
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find those containing a parallel (within a tolerance) gradient directionm.

If one is found, then "X" is added as the next point in the line from the
neighbor. Neighbors that are colinear to the gradient of "X" are excluded
to prevent false lines from forming, The operational cycle of the subset
generator is diagramed in Figure 2-6, An example of the subsets derived

from a gray level image is shown in Figure 2-5(e).

2.1.4 Blob Detector

The blob detecter detects the presence of a contiguous area of gray
levels lighter (or darker) than its surrounding background. It operates
independently of size, orientation, and position, and will detect all but

sharp, concave shapes.

The operation of the blob detector is similar to that of the subset
generator. The input data is the output of the gradient stage. Basically,
the blob detector seeks to trace paths along contiguous, slowly changing
gradient directions. Bookkeeping counters for each path being traced keep
track of the gradient at the start of the path., When two paths from the same
starting gradient join, a blob detection occurs., Additional bookkeeping
counters measure the maximum and minimum X and Y excursions, providing a

measure of the blob's size.

Figure 2-6 depicts the operational cycle of the blob detector. It
uses the basic 5-cell window scanning the gradient image. Each of the 4
neighbors of the X-pixel is examined to determine if X should be added as
the next point in a blob tracing path. Figure 2-5(d) displays the paths

being traced out from the gradient image, Figure 2-5(b). The numbers
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printed out in the figure indicate the coded bits that keep track of the
start of each path. Bl b detection is coded as a pair of B's. The output
of the blob detector consists of the blob polarity, center positicn, and
borizontal and vertical dimensions. This data permits the object to be

isolated for feature extraction.

2.1.5 Texture Data

The third preprocessor function is the collection of statistical data
for texture classification. The gray level image area is divided into windows
of 30 x 30 pixels for statistical data collection. The average gray level
and average gradient amplitude is computed. A limited histogram of the
gradients is accumulated; i.e., the number of pixels with gradient amplitude
equal to zerov, one, two, and three. Also, two additional parameters are
computed: (1) the number of pixels with gray level > a, and (2), the number
of pixels with gray level < b. The subset generator provides two statistics:

(1) the number of subsets pexr window, and (2), the number of "long" subsets.

This study, however, concentrated on the training and testing of the
target recognition algorithms, not so much on texture analysis. The texture

statistics were generated during the study, but were not classified or utilized.

2.2 Final Processor

The final processing of the data is accomplished in a programmable pro-
cessor (general-purpose computer). Tts task is to generate the recognition
featuces and perform the target decision logic. A block diagram of the final

processor is shown in Figure 2-7,
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2.2.1 Blobs and Groups

To reduce storage and speed regquirements and to reduce buckground
interference, recognition features are not computed for the en-ire image.
Instead, they are initially computed only within local rectangular uveas
whose positions are designated by the blob detector. Therefore, the blob
detector in effect “cues" the processor to a local area coataining a possible
target. However, for those target: having complex shapes, such as aircraft,
cues are also initiated by the presence of a "starter" subset., A starter
subset is defined as one whose lenyth exceeds a predetermined value (e.g.,

l> 5). For each starter subset within the image, a square a:ea (or window)
centered on the subset is also used as a positional cue for the processor.

The blob and long subset windows are used to collect groups of subsets, as

will be discussed later.

As seen from Figure 2-7, the first function performed by the processor
is blob merging. Under certain conditions a single target can give rise to
multiple (usually no more than two) blob detections that overlap. Thereforr,
the blob list in the preprocessor buffer stage is scanned for blobs wicnh
overlapping areas. Overlapping blobs are merged into a single new blob

whose area will enclose the union o the original blob areas. See Figure 2-8.

Following blob merging a search is made for several different "associations".

In general, an "association" means that an element (e.g., blob) is within a
specified distance from another element., An association of long subsets with
other long subsets is a significant association. These pairings may later be

screened to detect the presence of roads. Also the association of blobs with
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Figure 2-8. Blob Merging

i long subsets is examined. Subsequently, these long subsets are prevented

: from being used tc collect a subset group, since the blob is usually a more 3

accurate cue.

When the associations have been made the process of group forming starts.

Each blob or long subset defines a window. For each window, all subsets are
screened by X-Y position. All the subsets falling within the window are

o defined as the group for that window.

| Further screening of the groups is done to eliminate subsets not

belonging to a candidate target area, It should be noted that the gradients

of the subsets belonging to any dark (light) object point inwards (outwards),

with few exceptions, See Figure 2-9(a).
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Figure 2-9, Significance of Polarities Between Subsets

Subset pairs with non-opposing (inconsistent) polarities, as in Figure 2-9(b),
do not usually belong to an object, but are merely background clutter. There~
fore, long subset §roups are screened of any subsets with polarities incon-
sistent with the long subset defining the group. Blob groups are screened

of auy subsets with polarities inconsistent with the blob color, and relative

to its center.
2.2.2 Feature Generation

The performance of a recognition system ultimately depends on the
choice of measurements or features representing the target which are used
by the decision logic. Because of its programmable nature, the final pro-
cessor can be readily modified as regards both the target complement and

their associated feature sets.
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of features to be calculated for each blob or long subset group (i.e., candidate

The training phase of this study resulted in the selection of 11 types

object). These will now be described.

(1)

(2)

(3

%)

(5)

Dimensions:

The vertical extent AY of an object is output from the blob detector
or computed from the long subset group. The horizontal extent & X is
also computed.

Aspect Ratio:

The aspect ratio is defined as A X/ . Y.

Number for Further Processing - N.F.P.:

As previously stated, the subsets in each group are screened for polarity.

In addition, the remaining subsets are designated as belonging to the
top or to the bottom of the group. The designation is based upon the
orientation ~.nd polarity direction of the subset. This sorting ef-
fectively separates the object into a bottom half and a top half. In
the process, if any subset's midpoint physically occurs in the opposite
half, it is thrown away. The number of subsets remaining at this point
is called the N,F.P. count,

Final Active Quadrant Count - NFACT

The subsets are also sorted in*o a right side or a left side based on
angle and polarity. At this point, each subset has been assigned to
one of four quadrants, The number of quadrants that have at leas;

one subset is the NFACT count.

Length Residue AR:

This is a feature useful for separating triangular objects from

rectangular objects., It is an approximation of the total length of

st s, S .
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0]

non-parallel subsets within a group. Its dimension is in pixels. A
triangle A has a positive value, a rectangle E has zero value,

and a triangle Vﬁ? has a negative value, It is computed as follows:

For each quadrant K = 1, 2, 3, 4 compute

S S-d- 3%
"% T4

where NK = number of subsets in quadrant K
S = the subset's length
& = min. {off-—vertical orientation of the subset
\_off-horizontal orientation cf the subset

d = distance from center of group.

S—r

Th - ( + ) - (& +
en 4R Reft R ight left R ight
top top bot. bot.

Closure:

25

Closure 1is defined as “"F?"

where S = each subset's length

P=2 +(AX+ AY)

KHOLE:

Many APC targets display a black "hole" from the rear viewing angle.
This feature searches for this property. Lf a subset of the correct
angle and polarity is found in the top half of an object, such as to

be the top part of the "hole", then KHOLE = 1. Otherwise, it is V.

2-1¢
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(8) LONTOP:
Many of the tanks at long range displayed a rather long, somewhat
norizontal cop. \Apparently the turret was not very hot.) So if
a long, nearly horizontal subset forms the very top of the object,
LONTOP = 1. Otherwise, it is 0.

(9) Corners and Notches:
The top half and bottom half of the object are searched separately
for the presence of an outside corner or an inside corner (notch).

See the drawing below. C
o orner

Those nearest 90° are printed out. We thus have four possibilities:

C N
’ “bot’

Ceop top® Vbot®

(10) Peak:

To discriminate tall column-like tops (or bottoms) from low broad or

[TV T T

flat tops (or bottoms), the peak calculagion is made for the subsets Is

i, Gl

in the top and bottom halves, separately. It {s computed as:

B - S/,
= Z ?-
Peak S 5/2. x 100

where ﬁ-Z(%’)‘I F

6 = subsets horizontal angle

S = subset length

8 Thus the shape ¥ has negative Peak, while ! has positive Peak

- ) values. One other parameter is computed: A Peak = Peakmp - Peakbot.

2-17
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(11) Sym:

To measure the symmetry of the top (or bottom) of an object, another

calculation is made., For the top and the bottom subsets, compute:

T2 (x-x)

X 10O
£rZT 2

5-./90-8 A
where 2 = 32'.'<—33"' t 07

S and & , as before,
X, = midpoint of the object
X = the subset's midpoint.
Asym metric tops, such as —wedl®®3 will have a large Sym magnitude.
Symmetric tops A will have zero values. Two additional parameters

are computed:

m = ’,Z'{/SY”‘T,,,/ ” /5)"“507/}

and

A S = | { [Sym,,| - /5/~sor/} ,

2.2.3 Recognition Algorithm

As indicated earlier in Figure 2-7, the final block in the processor
is the recognition algorithm. A block diagram is shown in Figure 2-10. The
features for each blob or long subset group have now been computed. The
first process indicated in the figure is the screening out of false alarms,
or non-targets. To that end, two stages are employed. The first stage uses
the False Alarm Rejection Criteria of Tables 2-I, A failure in any of the
rules, rejects the group as a false alarm. The second stage 1s a minimum

acceptable value for the feature Closure, as shown in Figure 2-10.
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TABLE 2-I

FALSE ALARM REJECTION CRITERIA

REJECT A CANDIDATE TARGET AS A FALSE ALARM
IF IT FAILS ANY FOLLOWING TEST:

1)
2)
3

4)
5)
6)

7)
8)

9)

NFACT 2 3 (for subset groups, only)
NFP 2 3 (for subset groups, only)
C-N count 21 for .37 < Closure £ .6

22 for .6 < Closure £ ,7
23 for .7 < Closure £ .8
(for subset groups, only)

Closure s .8 (for subset groups, only)

|ar] > .19

N

N

N
o

Aspect Ratio (for blob groups)

4

in

Aspect Ratilo

128
w

(for subset groups)

Peak < 30,
Bot

ISymTop [ < 900,

or Bot

3 £ 424X £26

3 <2 AY £ 26
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All groups (or objects, at this point) remaining are considered targets
and will be classified into one of the three target classes. A total of 13
features are used to classify the targets. Normally, though, only the first
11 are used in classification; the remaining 2 are added for tie-breaking
cases. Decision boundaries in the ll-dimensional* feature space were es-
tablished during the training phase, as described in Section 3.4. To achieve
an early estimate of performance, a simplified decision space was utilized.
As shown in Figure 2-11, nine features are used in a pair-wise manner to
yield 15 separate classification regions. The 10th and 11th features (KHOLE

apd LONTOP) provide 2 additional classification regioms.

The first step in classifying a target is to determine the region (or
regions) that contains the target's feature pattern, to provide a tentative
class decision(s). As shown in Figure 2-12, the next step is to take a vote
of the tentative decisions. Note that a NON-TRUCK region provides one TANK
vote and one APC vote. Similarly, NON-APC and NON-TANK provide 2-vote

tentative decisions.

If there is no majority, special tie-breaking rules are employed. These
are tabulated in Table 2-II, and utilized as shown in Figure 2-12. The final

clagsification decision, as well as the target's coordinates are the output

data.

*However, one of the features, APeak, is correlated with two other features,
PeakTOP, and PeakBOT‘
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Figure 2-12 Classification Logic Flow

TIE

USE THE FOLLOWING RULES, SE-
QUENTIALLY, UNTIL RESOLVED.

2-23




SET A

L Lt 2 ek i sl o L

TR e

If

If

If

If

If

If

If

Peak o < Peak

TABLE 2-II

TIE-BREAKING RULE>

a Peak < =50

Top Bot

N.F.P. 2 9

2 110

PeakTop> 10

there exists N

Bot

AR > 0
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3.0 TEST PROGRAM USING NVL IMAGERY

The statistical test program involved the collection and preparation of
the data base, and the use of these images to "train" and "test" the image
processing system by computer simulation. These steps will be described in

this section.

3.1 The Data Base

The data base was supplied by NVL. It consists of 14 magnetic digital
tapes of FLIR data, as listed in Table 3-I. The images had been digitized
from a TV-fermat FLIR system via video tape recordings. Each digitized image
1s 800 x 1024 picture elements (pixels) of 8-bit gray level data. Each
digital tape file contains a separate image. Ground truth and 35-mm. film

transparencies were also supplied for the images.

The imagery contains target and a few non-target scenes, The targets
are: an M60A tank, M113 APC, and a 2% ton truck (probably M35 type). Rough
sketches of these targets are shown in Figure 3-1. Dimensional information
is also given. Probable IR "hot" spots are located by the "+" signs. A
study of the film strips that were provided shows that frequently at longer
ranges, the turret of the tank is not visible. The truck has a "cold" area
in the rear, noticeable at close range. The APC also has a distinct charac-
teristic, at close range and rear view. It has a noticeable black hole in
the middie, where the door is located. However, at moderate and longer ranges
the targets are difficult to visually reccgnize. (This will be discussed

further in a later section.)
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TABLE 3-I LIST OF DIGITAL TAPES AVAILABLE
TAPE NUMBER OF FILES .
A 10
B 10
3
c 10 1
D 10 i
E 10
- F 10 ]
G-H 15 3
H-I 15
I-J 15
, J-K 15
e L 10 :
i M-N 15
1 N-O 10
] P >12
3
|
y
¥
:
1
E
A
b
13
F
o
o 3-2

1
.
L]




HEIGHT (M) LENGTH (M) WIDTH (M) 13
TANK  MB0A 326 6.95 3563 %]
i
APC  MN3 22 4.58 2.69 §
i
]
TRUCK M35 254 8.1 2.44 7
gz
;
f § P>
13
SIDE VIEW, END VIEW 3
M60 :
TANK iy
f‘
y,
! 3
)
3 1
M113 A
APC : + 3
; E
: 3
1 :
- Yatck coLo ; 3
E 2-1/2 TON OO :
& - 3
,i; . + DENOTES PROBABLE HOT SPGT 1
1 760564.V-6
F
r
E

"

Figure 3-1 Sketch of Targets
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The film strips also reveal that many of the ‘mages are seriously degraded
in quality. Vertical stripes and ripple are present on the left side of images.
Herringbone and Moiré patterns, and ripple appear sporadically over the field-
of-view of many images, and horizontal black and white streaks occur occasion-
ally. Additionally, the resolution appears to be much lower than the pixel

spacing. These distortions will be considered later.

3.2 Preparation of Imagery

As the digital tapes arrived from NVL, they were copied to provide
"working" tapes more compatible with the particular tape drives at Westing-

house. Copying the tapes was often a difficult task; errors were frequently

encountered. On the average, two attempts per tape had to be made. It was

SRS

also discovered that Tape P contained completely unknown data. It was there-

fore dropped from the data base.

The second step towards preparing the data base was to generate a set
of sub-images or "windows'. The existing simulation of the image processing
system uses images of size 50 pixels by 50 pixels. This heretofore provided

;;‘ a more than adequate area to include any target of interest, plus some back-
ground clutter. It is also fast-running in the simulation, keeping computer
time costs at a wninimum. To hold computer costs down and stay compatible

with the existing software, the same size format was used for thie study.

A 50 x 50 pixel window was created for each target in each image.
Using the ground truth information and film strips that were supplied, the
- coordinates of 50 x 50 size areas containing a target were tabulated. Using

a computer subroutine, the gray levals of these areas were "lifted" from the




digital tapes and copied onto another magnetic tape, as separate files. Figure
3-2 shows an example of a window containing ar. APC lifted (or extracted) from

file 2 on magnetic tape I-J (ground truth image L~10).

Some of the rargets in the data basc are very large (e.g., > 100 pixels
in length). To fit them within the 50 x 50 windows, areas containing larger
targets were digitally shrunk to appcoximately 15-20 pixels in target length.
The shrinking was done by averaging a neighborhood and using that value as a
single new pixel. A 2:1 shrink, for example, averages a neighborhood of 2 x 2
pixels to obtain a gray level. The next gray level comes from the next ad-
jacent 2 x 2 neighborhood. As a consequence, high frequency noise is reduced
and resolution is reduced. However, the resolution loss was considered non-
detrimental for two reasons. First, the FLIR sensor data had been oversampled
in deriving the digital version of the images. Secondly, the present target
recognition system is oriented towards operation with longer range targets -
thus small size (10-30 pixels, e.g.) and lower resolution-on~target.

The result, then, of those images that were shrunk while being extracted is

a smaller, somewhat smoothed, version of the original.

At the same time that the windows were being extracted from the data
tapes, the lowest 2 bits of gray level data were dropped. The digital image
processing system requires only I or 6 bits of data, and it was estimated
that the image data provided did not contain any significant target or scene

information in the lowest 2 bits. So only the upper 6 bits were retained.

After the 50 x 50 windows were written on magnetic tape, they were
photographically played back for visual inspection and verification. The
playback photos revealed that Tapes I-J and J-K did not coincide with their

expected film strip images. Tapes I~J and J-K had to be reformatted and
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recopied to make tapes compatible with the photo playback system. Playbacks
of these tapes showed that Tape I-J contained images L-9, L-10, J-7 through
J-10, and L-1 through L-9, in that order. Tape J-K contained, consecutively,
images J-1 through J-10, and K~1 through K-5 (instead ¢ JS-6 - J10, K-1 +

K-10 as expected).

A total of 1005 windows werc¢ extracted. Approximatelr 240 contain
targets (some are ymknown in grournd truth); the remaining windows contain nc
targets and are used for false alarm testing. Table 3-II lists all of the
windows and targets, along with some diagnostic and ground truth data. ihe
last page of Table 3-II lists the sources of most of the non-target windows.*
The "MULX'" and "MULY" columns indicate that a whole set of adjacent 50 x 50
windows were extracted from one image. For sxample, the last entry indicaces
that 320 windows (20 across by 16 down) were listed from image D-9 and were
! labeled window number 686 through 1005. Figure 3-3 shows phctographic play-
backs of all 1005 windows comprising the data base. It should be explained
that the windows that appear to be all whire are playbacks of windows extracted
from images with reversed (negative) polarity. Upon extraction, these gray
levels were complimented for polacity correction, however no d.c. adjustment

e . was made since the preprocessor only uses the gradient information. Un-

fortunately, this sometimes caused white saturation during playback (with

the brightness and contrast set up for normal polarity windows).

The statistical test requires separate sets of training and test images.
Therefore the windows containing targets (as verified by the playbacks) were
split about equally between training and test. An atteupt was made to alter-
nate succ2ssive images of a target between training and test, so that the two

sets would contain roughly similar aspect angles, ranges, etc. for each tr-rget.

*Some of the images did contain targets and had already been extracted, so
those 50 x 50's here that contained such areas were excluded from aur
further usage.
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Figure 3-3. Photo Playbacks of 50 x 50 Images
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Figure 3-3. Photo Playbacks of 50 x 50 Images
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Windows containing targets of unknown ground truth were excluded. Also,
windows from Tape N-O often did not contain a target, indicating incorrect
correspondence with the film strips (as happened with Tape I-J). These

samples were naturally excluded.

During the various examinations of the window playbacks, it was observed
that there were many seriously degraded target images. A quick check showed
that the problem was the ripple, herringbone, and Moire distortion seen in
the film strips and discussed earlier. It was especially apparent in the 50
x 50 window playbacks that were not shrunk because they are, in effect, a
blown-up version of the original. Two examples of the degraded windows are
shown in Figure 3-4. The upper 50 x 50 window contains a tank lifted from
image L-2 (located by the arrow in the playback of L-2)., The lower 50 x 50
window is an APC lifted from image L-3. Samples that had similar serious

degradation were keyed for later reference.

Finally, Table 3-III shows the number of samples used in the training
and test sets. The degraded samples were also used, but are tabulated

separately in the table.*

3.3 The Image Processing Sequence

Before proceeding into training, a brief review nf the processing sequence
is in order. Figure 3-5 shows the flow of data through the processor. Sub-
images of size 50 x 50 pixels are lifted from the original scenes of size 800 x
1024. These small windows are written on another digital tape and photographically

reconstructed.

*The totals shown in Table 3-III differ slightly from those proposed in the
December '75 Progress Report. The difference arises because later examination
of the newly available playbacks indicated some missing targets, as already
mentioned.
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TABLE 3-IIT NUMBER OF SAMPLES

DATA BASE - NUMBER OF SAMPLES

FALSE
TANK TRUCK APC ALARM IMAGES
TRAINING SET:

‘ ACCEPTABLE IMAGES 26 1 13 26
: DEGRADED IMAGES 15 8 18 L {

; : TOTAL 41 19 31 26
TEST SET:
L’ ACCEPTABLE IMAGES 30 9 11 213
DEGRADED IMAGES _1 8 16 L ?

TOTAL 37 17 27 213
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The processing itself is split into two parts - a preprocessor "front-
end", and a final processor., The preprocessor has an optional two-dimensional
filter at the input. A single threshold is the only adjustable variable in

the preprocessor. The level for this minimum gradient threshold was determined
and set permanently prior to training. Final processing consists of two stages

of false alarm screening, followed by a classification stage.

For estimating the performance of the system, scores were taken at the
points indicated by the arrows., This will be further discussed in conjunction

with the results tables.

3.4 Training Program

Since the digital image processing is split into two parts, it was
convenient to perform the simulation and analysis of the training samples in

two corresponding steps.

It was first necessary to select the amount of prefiltering and the
level of minimum gradient in the preprocessor. A small set of windows from
the training set were preprocessed using three different degrees of filtering
and three levels of minimum gradient. Plots of the preprocessor outputs
(subsets and blobs) were made on a Calcomp Model 763 plotter for visual
analysis. It was evident that a 3 x 3 pixel 2-dimensional filter reduced the
edge gradients on objects excessively. A 2 x 2 size filter was not excessive,

yet it did provide some additional noise reduction.*

The minimum gradient threshold determines the sensitivity of the pre-
processor. As it is lowered, the number of éubsets increases; i.e., fainter

edges are allowed to come through, Thus, as the threshold is reduced, fainter

*As described earlier, those windows that were shrunk ware consequently
being additionally filtered, as well as reduced in resolution,
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targets will be detected. However, since the amount of clutter and noise data

\ is also increasing, the ultimate false alarm rate will be higher.

To provide the greatest number of training patterns possible for feature
analysis, including those of faint targets, a low minimum gradient threshold
was desirable. 71he very lowest that had been run was 2.0*%, However, that
setting provided too much background detail, which would interfere with the

computation of the recognition features for training. Therefore, a value of

2.5 was chosen. Subsequent training and test runs were made at that threshold !

level.

ine entire training set of windows were then preprocessed and the re-
sults saved on magnetic tape. From a previous program (Ref. 3) a set of
recognition features had been developed for a 4 class environment (tank, jeep,
truck, and personnel)., Since this software already existed, an initial trial
with these features was attempted. Specifically, the training set was pro-
cessed through final classification using the existing program. Since only

one half the target types were the same and one recognition feature was un-

available (range), the actual classification results were ignored. However, ;

the values of the recognition features that were calculated and printed out J

Lt

were tabulated for each target sample. Scatterplots of these features were

then made.

Experience from previous programs showed that the usual statistical
measures such as means and variances can frequently be misleading because
the distributions are often multimodal. Different target viewing angles,
resolutions, etc., yield different modes. Analysis using scatterplots proved

to be the most effective method to quickly dexermine separability of the classes.

*That is, 2.0 out of 32 possible gray levels.
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The scatterplots suggested that the existing features Aspect, AR, NFP,
and Closure should be retained. The features Khoriz, and Number of Quadrants

Active should be modified. The remainder should be dropped and new features

added.

Calcomp plots had been made o5f the preprocessor outputs for all the
windows. Investigations of the Calcomp slots suggested some new trial features.
These were programmed into the final prccessor simulation, and the training
windows were rerun. Tables and scatterplots were then made of the new and
modified features, An analysis of the results indicated that some further

modifications of the new features were needed.

After re-programming the modifications the training set was again rerun
through the final processor simulation., Scatterplots of the new features
were made. The plots suggested that the classes were not linearly separable.
Therefore any training algorithm that did not converge unless there was

separability should not be used,

As in previous studies, the number of samples for training is much too
small to try parametric methods of designing a classifier, even if a distri-
bution could be assumed. Nonparametric classifiers that require storage and
searches of templates or sample patterns (e.g., k-nearest neighbor algorithms)
are either too time consuming for real-time data rates or too limited in the

number of models to handle all the variations in =spect angle, etc.

An adaptive training algorithm such as the sum-line algorithm that had
been programmed in-house would be appropriate for a classifier. However,
time did not permit experimentation with it under a multi-class conditionm.

To expedite estimates of system performance, a two-layer classifier (Ref. 4)
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was chosen. Subdecisions are made on the basis of deterministically designed
boundaries from the scatterplots and the special features KHOLE and LONTOP.

The subdecisions are then used in making a final decision.

Consequently, training was done by drawing decision boundaries from the
scatterplots that would minimize the final error-rate and still provide
reasonable extrapolative performance. The scatterplots of the training set
data (target windows) are shown in Figures 3-6(a), (b), and (c). The decision
boundaries have also been drawn in. Note that the region NON-TRUCK actually
means APC and TANK. Linear boundaries are used because they are simple to

implement in software (e.g., in a p~Processor) and are computationally fast.

The final boundaries for the various features are shown in Figure 2-11
of Section 2.2. The final decision of the target class is made by taking a
majority vote of the outcome of the individual boundary sets. In case of a
tie, additional rules were developed from investigations of the scatterpiots.
The final decision logic is also described in Section 2. A tabulation oi the
features, grouped by target class, suggested several additional criteria to
separate the target features from non-target (or false alarm) features. These

tests are shown in Table 2-1.

3.5 Scoring of Training Set

Upon completion of the classification algorithm design, the training
samples were processed and scored. Table 3-IV gives the results. The scores
for the previously keyed degraded samples are separated from those of the
remaining samples. An "*" denotes the degraded sample scores. The leftmost
column shows the number of target samples that were processed in this training

set. Referring back to Figure 3-5, the number of targets at the output of
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Figure 3-6(a). Training Set Scatterplots.
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the preprocessor ('"Score #1" arrow) are tabulated in the second column of

Table 3-IV. It is at this point that the target has been initially detected.

The final processor has two stages of false alarm screening. The

number of targets remaining after the first stage (see Figure 3-5, "Score

06 o W0 o

#2" arrow) are listed in the third column of Table 3-IV. Those targets

e

remaining after the "false alarm closure test” ("Score #3" arrow) are counted

and given in the "Number Remaining Thru Closure" column. This completes the

false alarm screening. All remaining objects are now assigned to a target

E
i
g
é
;
lﬁ

class by the classification logic. Those targets that are correctly classi-
fied are counted ("Score #4) and listed in column 5 of the Table. A special
count was also taken at the "Score #4" location. The computer simulation
actually provided classification of all detected targets (i.e., bypassing

false alarm screening). Scoring the classiffcation of all detected targets

will give a better estimate of how well the classification algorithm, itself,

is performing, regardless of the screening performance. The righthand column

of Table 3-IV gives this count.

A look at the data in Table 3-IV shows that the detection count is high,
decreasing somewhat through the false alarm screening stages. It is apparent .
that. the degraded samples do not perform nearly as well as the acceptable
samples. While the closure test and classification stage take a heavy toll
on the degraded samples, the acceptabie samples do very well. Recalling the
tremendous distortioms, wtc., of the degraded images, it is not at all surprising

that they do not perform well.

The training zesults are shown in terms of performance percentages in
Tab’e 3-V. The ''Combined Samples" column containz the score for the degraded
and the acceptable samples combined together. Definitions for the different

percentages is given below.
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DETECTION: This is the percentage of ALL target samples that
were detected by the preprocessor, i.e., Score #1/
Score #0 of Figure 3-5.

DETECTED AND SCREENED: This is the percentage of ALL target
samples that remained through false alarm screening,
i.e., Score #3/Score #0 of Figure 3-5. These
remaining samples will all be next assigned one of
the target classes. From an operational aspect and a

human factors aspect, it is this score that is often

termed "detection'.

CLASSIFICATION OF DETECTED AND SCREENED SAMPLES: This is the
percentage of the above target samples that were correctly
classified, i.e., Score #4/Score #3 of Figure 3-5.

DETECTED, SCREENED, AND CLASSIFIED: This is the percentage of ALL
target samples that were detected, screemed, and correctly
clagsified, i.e., Score #4/Score {0.

CLASSIFIER PERFORMANCE: As described earlier, a special count at
location "Score #4" was taken to provide a performance
estimate of the classification algorithms, independent
of the false alarm screening. Specifically, all targets
at location "Score #1" were run through the classification
logic. We thus have the performance estimate:

Special Score #4/Score #1.

Referring back to the data in Table 3-V, it 1s verified that the
detection rate is quite high, especially for the acceptable sample category.

The Detected and Screened score is also good for the acceptable samples.
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The degraded samples are too broken up by distortion to effectively pass
through the screening stage, and thersfore pull down the average score.
Classification of the Detected and Screemed targets 1s good. Even the de-
graded samples have a Passable score, nearly twice as good as random chance

(33% for threc equal target classes).

The Detected, Screened, and Classified rate is the product of the two
scores above it. 350 naturally, it is lower than either score. It is evident
that the lower performance of the degraded samples pulls down the '"combined
samples" score. Otherwise, the acceptable samples perform well. Finally,

the Classifier Performance percentages show creditable performance, even on

the degraded samples.

In addition to scoring the performance on target samples, several non-
target images were included in the training set, fcr false alarm estimates.
These windows were specifically chosen to include many target-like objects,
more than an average scene would contain. This helped to derive more effective

false alarm screening criteria in the training process.

The non-target windows were processed along with the target samples and
scored. Initially, 14 out of 26 windows had false alarms. However, a detailed
examination of the results showed that 6 of the false alarms were from extraneous
image data, not a part of the FLIR scene. One source was the alphanumeric
characters superimposed on the video, Other extraneous sources were black,
and white horizontal lines through the image. These are not part of the FLIR
video, but are from digitizing or magnetic tape errors. Figure 3-7 shows an
example of a white line through the image. The upper picture is a playback

of image J-9 on Tape I-J. The lower picture is a playback of J-9 on Tape
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Figure 3-7. Extraneous White Line in Image
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J-K; 1t does not contain the white line even though it's the same scene. The

last extraneous causes of false alarms were the cursor and horizon line. These

also would not normally be a part of the video sent to a processor.,

Therefore, false alarms caused by these sources were henceforth excluded.

-

That leaves 8 out: of 26 windows with false alarms, or 31%. As indicated pre-
viously, an average scene would not contain as many targetlike objects over

the whole field-of-view, Thus the average rate would be lower.

In addition, a higher preprocessor minimum gradient setting would reduce
falee alarms. A sensitive setting of 2.5 had been used to provide a greater
number of target patterns for training purpo-nes. For comparison, 61 non-
target windows (including the previous 26)/@ere processed at a preprocessor
gradient level of 4.0, The false alarm €A£e then jumped down to 8/61 = 13%.

Time did not permit re-processing the tgéget windows to estimate the natural
/

.’ .
drop in detection or recognition rates;/ However, experience on a similar

previous study indicated that the fal%e alarm rate dropped much faster than

/

the detection, or recognition rates for an increase in gradient setting.

/
/

/
A second control over the fﬁdse alarm rate is in the final processor -

the false alarm closure test, A/%ariation of this parameter will be described

’

/

v

in the next section.

3.6 Test Set Performance

Following the conclusion of the training phase, the test samples were
processed using the thresholds and algorithms established during training.
The same types of scores were then counted, Table 3~VI presents the raw

data for the test set., As before, the degraded images have been separated
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and marked by an "*", The columns are the same as used in Table 3-1V. The
results are more easily viewed as percentages, given in Table 3-~-VII. The

definitions of the various scores are also the same as detailed earlier.

The Detection rate shown in the table is again excellent. The detected
and Screened rate 1s good for the acceptable samples, but is inferior for the
degraded samples. Similar results were experienced with the training set.
(lassification of Detected and Screened samples was lower than the training
set, althcugh still twice as high as random chance. This would indicate that
additional samples should be used in the training set to derive more general
classification boundaries. A look back at the raw data shows that the truck
class was the main cause of the lcwer score. An examination of the scatter-
piuts for the truck class point out that the number of truck samples in both
training and test is small. Therefore the full spread of their probable
feature distributions was not well represented. A larger training set should

provide better results.

The "product" score - Detected, Screened, and Classified was drivem
lower than the training scores by the lower classification performance. The

Classification Performance was lower than the training set. The difference

e

arises from the same problem as encountered by the Classification of Detected i

and Screened Samples score and discussed above. Additional training samples,

especially for the truck class, should improve the performance.

A summary of the training and test results, by window number, is shown
in Table VIII. The windows that were considered degraded in quality are b
indicated in the fourth column. In the "Fesult” colummn, a "C" indicates that

the target was detected, screened, and correctly classified. If the target
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TABLE 3-VIII. TRAINING AND TEST RESULTS - BY WINDOW

Window

Number Training Test Degraded? Result
1 X X C
2 X C
3 X c
Y X X D
5 X - M
6 L X D
8 X c
S X C
11 X C
32 X C
13 X X C
1L X c
15 X C
T X M
20 X M
21 X C
22 X D
25 X c
26 X C
27 X M
3 D 4 - ST c
32 X C
33 X c
34 X D
35 X D
36 X c
37 X c
38 X c
é 39 X o
2 40 X D
E b1 X G
E L3 X X M
] Ly X C
3 45 X C
5 46 X _ M
; 47 X c
;‘ . 48 X c
- L9 X X M
3 51 X M
E: 52 ) x M
[ 53 X c
5k X X M
. 55 X X M
3 57 X X M
E 58 X M
;
E
E KEY: C = Detected, Screened, aad Correctly Classified
4 D = Detected and Screened, but Misclassified
? M = Missed (No Detection)
L
- :
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I TABLE 3-VIIT, TRAINING AND TEST RESULTS - BY WINDOW (Continued)
i
§

) Window
: Number

60 X
61 X
62
! 63
s 64
;- 65
' 67
E ,, 58
1 69
4 3
Th X

f 75
E 76 X

Training Test Degraded? Result
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TABLE 3-VIII. TRAINING AND TEST RESULTS - BY WINDOW (Contiaued)

pindow Training Test Degraded? Result,

132 X X
136 X
139 X
145 X
148 X
151
152
i 153
¢ 154
155
156
. 157
158
159
{ 160
161
) 162 X X
l 163 X
164 X
165 X
166
167
169
172 X
17h X }
iT75 X
1580 X
X
X

Rl

bl o] >
b

ol B ia

el

- ——a

o Bl

r—————

|
l

PHibe P4 >4

181

204

205 X

206 X

207

208

209 X

210 X

2i1 X

212 X

213 X X

21k X

215

216 X

218 X X

219 X

220 X X
X
X

zavauzraocavnovaoaxulaacanavaoaazzzz=za

e

Lk ST i

o]

s

221
222
223
22k
225
226
227
228 X

229 X X

|
|
|

vorRaIRIERTIROR=ZO

el i bl

e Ral
b

=
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TABLE 3-V1II. TRAINING AND TEST RESULTS - BY WINDOW (Continued) :

L8 Rty

Window . o
Number Training Test Degraded? Result

232 X

233 X

234 X

235 X

236 X

237 X

238 X X
2h3 X

2ks X
246 X
247 X

248
249
256
258
261
] 263
265
267
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- was detected and screened, but misclassified as to target type, a "D" is

given. Missed targets are keyed by an '"M".

s eluded to earlier, for false alarm testing, non-target windows were
lifted from the original digital images the same way as target windows. For
the test phase, 213 were processed. After excluding the falre alarms caused
by extraneous sources, 42 windows or 202 had false alarms. Note that this is
lower than the training false alarm rate. For training, windows containing
target-like objects were selected, but the test windows were selected to

represent areas over the whole field-of-view.

The false alarm rate can be reduced in at least six ways, as follows:
1 1. Reduce sensitivity threshold
2, Modify classification thresholds
! ' 3. Increase prefiltering
| 4. Tighten detection criteria

5. Use context information

6. Use range information.

4 As shown in the training results, the rate is lowered considerably by
r increasing the minimum gradient setting of the preprocessor {(reducing the
sensitivity). An increase of 1.5 lowered the false alarm rate by 18% in

that test. (Par. 3.5). Further insight into the effects of chnnging the .

e /b o ke d bl b’
. N - .
—

setting can be obtained from the results of a similar test program with

FLIR imagery, done for the Army at Frankford Arsenal (Ref. 3). Several

hundred samples were run at three different gradient or sensitivity levels.

The results are tabulated below. 3
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4

DETECTED DETECTED, SCREENED, FALSE ALARM

SENSITIVITY QETECTION AND SCREENED CLASSIFIED RATE
Low (4.0) 67% 67% 51% 2%
Medium (3.0) 95% 75% 54% 7%
High (2.0; 987% 85% 58% 19%

The present test results, run at a gradiernn threshold 2.5, are close to those
at the 2.0 setting above. It can be seen that reduction .f sensiti:i.y may
significantly reduce the false alarm rate while only slightly reducing the final

classification rate.

A second optior for reducing the rate is in the final processor, If the
false alarm closure criterion is increased, the false alarm rate will decrease.
As an example, if the minimum acceptable closure is changed from 0.37 to 0.40,
the 20% false alarm rate becomes 32 alarms in 213 windows, or 15%. Additional
study would be needed to determine how the detection rate is aifected by this

criterion,

A third method of reducing the false alarms is to increase the amount of
prefiltering of the data. Either defocusing-type filtering or more elaborate
neighborhood averaging type filtering would reduce those false alarms caused
by noise. If the significant target features are not obliterated by the

filtering, the recognition rate may be maintained.

False alarms could also be reduced by using only blobs as "cues" to
locate candidate objects. Long subsets would not be used as cues. For this
set of images, the false alarm count would drop from 42 down to 10 false
alarms out of 213 windows, or 57. Some targets would also be lost, but a
modification of the blob detector stage could retrieve a portion of them.

Further experiments into this possibility are desirable.

3-50
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False alarms might also be reduced through the use of texture or context
information. Texture statistics are already computed in the preprocessor.
Using them to classify the terrain was initially accomplished in the Phase I
portion of the Frankford study. Knowledge of the terrain type and use of other
background statistics can help prevent false alarms. In the present program,
texture statistics were generated. However, training and test efforts to

classify the terrain, and incorporation of the data into the decision logic

were not within the scope of the program.

Finally, range information can be quite useful in preventing false alarms.
Future sensor systems are likely to have available ranging devices for weapon
delivery. It was found in the Frankford study that the use of range information

aids in rejecting false alarms, as well as increasing target classification

ceuracy.

Given th2 variety of possibilities for reducing the false alarm rate,
reducing the initial 207 rate to, say, 1% is not unrealistic., Since each
window represents 1/80 of the field-of-view area (100 x 100 out of 800 x 1024

pixels), there would be then 0.80 false alarms per frame, or one alarm per

1.25 frames.

To the operator, though, the effective rate would be lower. Except
for the occasional effects of noise, new false alarms would ordinarily be
generated o- ly as new scenes are covered by the fieid-of-view., But the
scene only slowly changes (over several seconds) when the sensor looks out
at targets at long range. Therefore, it should be kept in mind that the
false alarm rate per frame will apply to changes of scene in the field-of-
view, in the system application, and not to the refresh rate of the sensor.
The operator will be faced with one probabie fslse alarm over perhaps 5 to

10 seconds, based or the false alarm rate noted above.
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3.7 Discussion

At this point, it is timely to note two important points about the
limited number of target samples. First, as emphasized by the problem with
the truck class, on a per class basis the number of samples may not be

sufficient to fully represent their distributions in the feature space. In

general, for single modal distributions, a minimum training set should contain

at least 10 samples per feature per class to provide a suitable estimate of
the distribution. (Although in practice, that is often difficult to achieve.)
In this case, there are 10 different features employed in the classification
boundaries. So while approximately 100 truck samples would be desirable,

only 19 were available for training. This naturally creates difficulties in
estimating suitable boundaries for adequate performance on completely new

samples (e.g., the test set).

The second point concerning the number of samples is the confidence
level., The statistical nature of the test creates some uncertainty about the
performance estimates. The confidence interval expresses how much confidence
is justified in the sample set. For example, the test score for Detected,
Screened, and Classified samples was 48%, If we assume that the outcome of
this score was binomially distributed* - a yes or no scoring, then the 95%

confidence interval for 50 samples is 33% to 63%. Additional samples would

narrow this wide range.

For a more "averaged" look at the performance estimates, the training

and test results are combined in Table 3-IX, The degraded images have been

*A questionable assumption in view of the complexity of the features and
classification algorithm., So this is likely to be an optimistic estimate.
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3.7 Discussion

At this point, it is timely to note two important points about the
limited number of target samples. First, as emphasized by the problem with
the truck class, on a per class basis the number of samples may not be
sufficient to fully represent their distributions in the feature space. In
general, for single modal distributions, a minimum training set should contain
at least 10 samples per feature per class to provide a suitable estimate of
the distribution. (Although in practice, that is often difficult to achieve.)
In this case, there are 10 different features employed in the classification
boundaries. So while approximately 100 truck samples would be desirable,
only 19 were available for training. This naturally creates difficulties in
estimating suitable boundaries for adequate performance on completely new

samples (e.g., the test set).

The second point concerning the number of samples is the confidence
level. The statistical nature of the test creates some uncertainty about the
performance estimates. The confidence interval expresses how much confidence
is justified in the sample set. For example, the test score for Detected,
Screened, and Classified samples was 48%. If we assume that the outcome of
this score was binomially distributed* - a yes or no scoring, then the 95%

confidence interval for 50 samples is 33% to 63%. Additional samples would

narrow this wide range.

For a more "averaged' look at the performauce estimates, the training

and test results are combined in Table 3-rX, The degraded images have been

*A questionable assumption in view of the couplexity of the features and
classification algorithm. So this is likely to be an optimistic estimate.
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excluded since they are probably unrealistic in terms of pure FLIR video.

Detection, and classification are both good. The "product" score Detected,
g p

Screened, and Classified is also acceptable.

To put the scores into perspective, consider the performance of a human
interpreter. The Detected and Screened score, as previously noted, is equiva-
lent to what a human observer would call '"detection'", and the classification
of Detected and Screened score is equivalent to an observers ''recognition" ]
rate. Mr., John Dehne of NVL indicates that for this type of imagery, an
observer's detection rate is approximately 90% and the recognition rate is

about 50%, under ideal conditionms. 4

Additionally, an adhoc experiment was performed in-house on this
particular set of imagery. The experiment was carried out with a voluntecer
subject* who had not studied or vlewed separately the training and test sets.
Three different sets of 50 x 50 windows (gray level playbacks) were viewed
and classified by the subject. At the end of each of the three sets, a
score was made, allowing some feedback to the subject. The totals of the
three tests are shown in Table 3-X. Even here, the truck class was inferior.
The average score was only 607, indicating difficulty with this imagery base.
This score is the "equivalent" of the Classification of Detected and Screened
Samples because the subject knew that every sample viewed did contain a target.
The false alarm or detection rate was not investigated. It is not intended
to imply that the machine classifier is better than the human - the conditions
were not identical and the number of samples too limited. However, it is

gratifying to note that they are not highly different.

*Actually, one of the program members, who had had only an initial acquaintance
with the Imagery.
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4,0 CONCLUSIONS AND RECOMMENDATIONS

The objective of this study was to estimate the performance of the digital

image processing techniques that have been developed on imagery from an 875-

line TV compatible FLIR sensor. Conclusions derived from this study are dis-~

cussed below. Iu addition, recommendations are made with regard to the emphasis

of future efforts.

From the simulation test described in Section 3.0, the following con-

clusions are drawn:

1.

Initial acquisition of target material is in the 90% range.
However, rejection of some targets is necessary to limit the rate
of false alarms. The best compromise depends upon mission
requirements.

Classification performance was generally in the 60-80% range.
Specific performance depended upon the size of the training set
and the quality of the images.

Extranecous sources of degradation of the imagery made testing

and evaluation more difficult. In practice, it is assumed that
most of these sources woud not be present in the FLIR video.

In view of the large number of features needed to separate the
target classes, the size of the data base was very limited. This
made extrapolation from the training samples to the test samples

a precarious trial for the classifier.
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4,0 CONCLUSIONS AND RECOMMENDATIONS

The objective of this study was to estimate the performance of the digital
image processing techniques that have been developed on imagery from an 875-
line TV compatible FLIR sensor. Conclusions derived from this study are dis-
cussed below. Iu addition, recommendations are made with regard to the emphasis

of future efforts.

From the simulation test described in Section 3.0, the following con-

clusions are drawn:

1, Initial acquisition of target material is in the 90Z% range.
However, rejection of some targets is necessary to limit the rate
of false alarms. The best compromise depends upon mission
requirements.

2. Classification performance was generally in the 60-807 range.
Specific performance depended upon the size of the training set
and the quality of the images.

3. Extraneous sources of degradation of the imagery made testing
and evaluation more difficult. In practice, it is assumed that
most of these sources wou'’d not be present in the FLIR video.

4. In view of the large number of features needed to separate the
target classes, the size of the data base was very limited. This
made extrapolation from the training samples to the test samples

a precarious trial for the classifier.
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